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ABSTRACT

The efficiency of large language models (LLMs) is fundamentally limited by their
sequential, token-by-token generation process. We argue that overcoming this
bottleneck requires a new design axis for LLM scaling: increasing the semantic
bandwidth of each generative step. To this end, we introduce Continuous Autore-
gressive Language Models (CALM), a paradigm shift from discrete next-token
prediction to continuous next-vector prediction. CALM uses a high-fidelity au-
toencoder to compress a chunk of K tokens into a single continuous vector, from
which the original tokens can be reconstructed with over 99.9% accuracy. This
allows us to model language as a sequence of continuous vectors instead of dis-
crete tokens, which reduces the number of generative steps by a factor of K. The
paradigm shift necessitates a new modeling toolkit; therefore, we develop a com-
prehensive likelihood-free framework that enables robust training, evaluation, and
controllable sampling in the continuous domain. Experiments show that CALM
significantly improves the performance-compute trade-off, achieving the perfor-
mance of strong discrete baselines at a significantly lower computational cost.
More importantly, these findings establish next-vector prediction as a powerful
and scalable pathway towards ultra-efficient language models.

Code: https://github.com/shaochenze/calm
Project: https://shaochenze.github.io/blog/2025/CALM

1 INTRODUCTION

Large Language Models (LLMs) have revolutionized the field of artificial intelligence, demonstrat-
ing unprecedented capabilities in understanding, generating, and reasoning with human language
(Achiam et al., 2023; Google, 2025; DeepSeek-AI, 2025). However, this remarkable success is
shadowed by a critical challenge: their immense computational demands. The training and in-
ference of state-of-the-art LLMs demand massive computational resources, leading to prohibitive
expenses and significant environmental concerns (Strubell et al., 2019; Bender et al., 2021). At the
heart of this inefficiency lies the foundational paradigm of these models: an autoregressive genera-
tion process that operates on a sequence of discrete tokens. Because the computational cost scales
with the length of the sequence, generating long-form text or processing extensive contexts remains
a fundamental bottleneck, limiting the scalability and accessibility of these powerful models.

The now-ubiquitous use of discrete tokens in LLMs is the result of a pivotal evolution from ear-
lier modeling paradigms. Initially, models that operated at the character level struggled with the
computational burden of extremely long sequences (Sutskever et al., 2011; Kim et al., 2016). The
subsequent shift to modern subword tokenization (Sennrich et al., 2016) was driven by a crucial in-
sight: increasing the information density of each text unit reduces sequence length and dramatically
boosts model efficiency. This historical success suggests a clear path for unlocking the next order of
magnitude in efficiency: continue to increase the semantic bandwidth of each predictive unit.

We argue, however, that this path has reached a fundamental limit, constrained by the very nature
of discrete representation. With typical vocabularies in modern LLMs ranging from approximately
32,000 to 256,000 entries, each token carries a surprisingly small amount of information—merely
15 to 18 bits (e.g., log2(32768) = 15). To increase this capacity—for instance, to represent a whole
phrase—the vocabulary size would need to grow exponentially, making the final softmax computa-
tion over this vocabulary an untenable bottleneck. This reveals a critical limitation: the information
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Conventional LM: Next-Token Prediction

The cat sat on the mat

Sequence Length = T

CALM: Next-Vector Prediction

Vector 1 Vector 2

Sequence Length = T/K

Autoencoder (K=3 tokens to 1 vector)

Figure 1: Comparison between conventional token-by-token generation and our proposed vector-by-
vector framework (CALM). By compressing K tokens into a single vector, we reduce the sequence
length K-fold, fundamentally improving computational efficiency.

density of discrete tokens is not scalable. Consequently, a profound mismatch has emerged: while
model capacity has scaled to unprecedented levels, the task itself—predicting low-information dis-
crete units one at a time—has not evolved. We are now deploying models of immense representa-
tional power on a task that fundamentally limits their throughput, forcing them to laboriously predict
simple, low-information tokens one by one.

In this work, we confront this limitation directly by introducing a paradigm shift from discrete to-
kens to a continuous-domain representation. Central to our approach is an autoencoder trained to
compress a chunk of K tokens into a single, dense continuous vector and, crucially, reconstruct the
original tokens from this vector with high fidelity. Unlike the discrete paradigm, where increasing
information density requires an exponential growth in vocabulary size, our continuous representa-
tion offers a scalable path forward: the vector’s information capacity can be gracefully expanded
by simply increasing its dimensionality to accommodate a larger K. This design directly reduces
the number of autoregressive steps by a factor of K. Ultimately, it allows us to reframe language
modeling from a task of next-token prediction on discrete token sequences to next-vector prediction
on continuous vector sequences, as conceptually illustrated in Figure 1.

However, shifting to the continuous domain introduces a significant challenge: without a finite vo-
cabulary, a model cannot compute an explicit probability distribution over all possible outcomes
using a standard softmax layer. To address this, we develop a comprehensive, likelihood-free frame-
work for our Continuous Autoregressive Language Models (CALM). Our primary contributions,
which structure the remainder of this paper, are as follows:

• A Powerful and Lightweight Autoencoder (Section 2): We first introduce an efficient
autoencoder architecture designed to produce robust vector representations. We demonstrate
that this model can be both compact and powerful, ensuring high-fidelity reconstruction of
the original tokens, which is a prerequisite for the downstream language modeling task.

• Likelihood-Free Language Modeling (Section 3): To perform generative modeling in the
continuous vector space, we employ a lightweight generative head that conditions on the last
hidden state to generate the output vector. While the generative head can be any continuous
generative model, options like Diffusion (Ho et al., 2020; Li et al., 2024) or Flow Match-
ing (Lipman et al., 2023) rely on an iterative sampling process, re-introducing a significant
inference bottleneck. Our framework therefore specifically adopts the Energy Transformer
(Shao et al., 2025b), a recent architecture designed for efficient, single-step generation of
continuous vectors, while empirically demonstrating superior generation quality.

• Likelihood-Free LM Evaluation (Section 4): The absence of explicit likelihoods makes
traditional metrics like Perplexity inapplicable. We address this by proposing BrierLM, a
novel metric for language modeling based on the Brier score (Brier, 1950). We show that
BrierLM is strictly proper, theoretically ensuring a fair comparison of model capabilities.
Crucially, BrierLM can be estimated unbiasedly by only drawing samples from the model,
making it perfectly suited for CALM where likelihoods are intractable.
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• Likelihood-Free Temperature Sampling (Section 5): Controlled generation via temper-
ature sampling is an indispensable feature of modern LLMs, yet it relies on the explicit
manipulation of a probability distribution. We introduce a principled, likelihood-free sam-
pling algorithm that can, in theory, draw samples from the exact temperature distribution,
and we accompany it with a highly efficient batch approximation.

We empirically validate our CALM framework on standard language modeling benchmarks, which
demonstrates a superior performance-compute trade-off. For instance, a CALM grouping K=4 to-
kens delivers performance comparable to strong discrete baselines, but at a significantly lower com-
putational cost. This findings highlight a new design axis for language models: rather than solely
scaling parameters and data for performance, one can now scale the information capacity of each
step as a powerful new lever for computational efficiency.

2 AUTOENCODER

2.1 HIGH-FIDELITY RECONSTRUCTION

The foundational component of our CALM framework is an autoencoder tasked with learning a
bijective mapping between a chunk of K discrete tokens and a continuous vector. Formally, we
seek an encoder fenc : VK → Rl and a decoder gdec : Rl → VK , where V is the vocabulary, such
that for a given token sequence x1:K = (x1, . . . , xK), the reconstruction gdec(fenc(x1:K)) closely
approximates x1:K . For simplicity and computational efficiency, we design our autoencoder to be
context-free, meaning it processes each token chunk independently of its surrounding sequence. A
context-aware autoencoder that also conditions on previous vector representations is a natural and
promising next step, which we leave for future exploration.

The encoder begins by mapping the input sequence x1:K to K embeddings. Each embedding is
independently processed by a position-wise feed-forward network (FFN). The resulting K hidden
states are then flattened and compressed by a linear layer: RKd → Rd. This unified representation
is passed through a second FFN and a linear projection to produce the l-dimensional latent vector z.

The decoder architecture mirrors the encoder. It first transforms z using a linear layer and an FFN
to obtain a d-dimensional hidden state, which is then expanded by another linear layer to dimension
Kd and reshaped into a sequence of K hidden states. Each of these states is passed through a second
FFN, followed by a projection to vocabulary logits using the tied input embedding matrix. Finally,
the tokens are reconstructed by applying an argmax operation over these logits.

The autoencoder is trained to minimize the reconstruction error by optimizing the standard cross-
entropy loss across all K token positions:

Lae(x1:K) = −
K∑
i=1

log pdec(xi|z = fenc(x1:K)). (1)

We empirically validate this architecture and find it to be both highly effective and efficient. For
instance, when grouping K = 4 tokens, a latent vector of just l = 10 dimensions is sufficient to
achieve high-fidelity reconstruction, with a token-level accuracy of over 99.9%. Moreover, the au-
toencoder is exceptionally lightweight; with a shallow architecture and a modest hidden dimension
of d = 512, its computational overhead is nearly negligible compared to that of language model.

2.2 ROBUST VECTOR REPRESENTATION

While the autoencoder described above achieves near-perfect reconstruction, we found that it is
practically impossible to effectively train a continuous language model based on the vector space it
produces. The root cause of this challenge is that an autoencoder optimized solely for reconstruction
learns an exceptionally brittle representation. Lacking any incentive to form a smooth latent man-
ifold, the encoder learns to pack information with maximum efficiency, creating a highly irregular
mapping. In such a space, a minor perturbation to a latent vector z—such as the small, inevitable
errors made by a generative model can cause the decoder to reconstruct a completely unrelated token
sequence. Therefore, for our CALM framework to be viable, the autoencoder must satisfy another
critical objective: its vector representation should be robust.
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Variational Regularization. To build a robust latent space, our primary strategy is to smooth the la-
tent manifold by moving from a deterministic autoencoder to a variational one (Kingma & Welling,
2014), aligning our approach with prominent generative models (Rombach et al., 2022; Liu et al.,
2023) that operate within a smooth and structured latent space. Instead of mapping an input chunk
directly to a vector z, the encoder now outputs the parameters of a diagonal Gaussian distribution,
µ and σ, from which the latent vector is sampled: z ∼ N (µ,σ2I). This change is accompanied
by a new objective term, a KL divergence loss that penalizes the deviation of the encoded distribu-
tion from a standard normal prior, N (0, I). The total loss function is thus a weighted sum of the
reconstruction and regularization terms:

Ltotal = Lae + β · LKL, (2)

where β is a hyperparameter balancing the two objectives (we set β = 0.001), and LKL is the KL
divergence, defined as:

LKL(pE(z|x1:K)∥N (0, I)) = −1

2

l∑
i=1

(1 + log σ2
i − σ2

i − µ2
i ). (3)

This variational objective discourages the encoder from relying on arbitrarily precise or large-
magnitude values in z, thereby promoting a smoother and more regularized latent manifold that
is more amenable to generative modeling.

Preventing Posterior Collapse. A significant challenge in training VAEs is posterior collapse. This
issue manifested in our model as a tendency for some latent dimensions to fully collapse to the
standard normal prior. While collapsing a dimension drives its KL divergence to zero, it renders that
dimension uninformative for reconstruction. More critically, these pure noise dimensions introduce
a chaotic signal that interferes with the training of the downstream language model, destabilizing
the learning process. To mitigate this, we adopt the KL clipping strategy from Kingma et al. (2016),
which modifies the objective by clipping each dimension’s KL loss at a constant floor:

Lclip
KL =

l∑
i=1

max(λKL,LKL,i), (4)

where LKL,i is the KL divergence for the i-th dimension and λKL is the threshold (we use
λKL = 0.5). This technique ensures that every dimension is encouraged to actively participate
in reconstruction, thus preventing collapse and fostering a dense, structured representation.

Dropout for Enhanced Robustness. Beyond structuring the latent space with variational methods,
we further enhance its robustness by injecting noise during training using two complementary forms
of dropout. First, we apply dropout with a rate of p = 0.15 to the latent vector z before it is passed
to the decoder. This forces the autoencoder to learn a redundant representation, making it robust to
minor prediction errors from the downstream generative model. Second, we apply dropout to input
tokens by randomly masking a fraction (p = 0.15) of tokens. Analogous to the Continuous Bag-of-
Words (CBOW) method (Mikolov et al., 2013), this compels the autoencoder to infer masked tokens
from their context, thereby enriching the latent vector with the chunk’s semantic context rather
than just performing a simple token-index compression. Crucially, these dropout techniques are
employed exclusively during the autoencoder’s training phase to build a robust latent representation;
they are disabled during the subsequent training and inference of the continuous language model.

The synthesis of these techniques produces a powerful and robust autoencoder. For a chunk of
K = 4 tokens, we now employ a latent vector of l = 128 dimensions, providing the necessary
capacity to encode information redundantly. The encoder learns a posterior distribution where the
standard deviations, σi, converge to approximately 0.3. This means that sampling the latent vector z
effectively perturbs the predicted mean µ with a substantial Gaussian noise σ ≈ 0.3I. Despite this
significant latent perturbation, the decoder still maintains a token-level accuracy exceeding 99.9%.
This vector representation, which combines high fidelity with high robustness, lays a solid founda-
tion for the subsequent learning of Continuous Autoregressive Language Models (CALM).
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3 LIKELIHOOD-FREE LANGUAGE MODELING

3.1 NEXT-VECTOR PREDICTION

The autoencoder developed in Section 2 establishes a robust and high-fidelity mapping between a
chunk of K discrete tokens and a single continuous vector, which allow us to reframe language
modeling from a task of next-token prediction on discrete token sequences to next-vector prediction
on continuous vector sequences. Specifically, a sequence of T tokens, X = (x1, . . . , xT ), is first
grouped into L = T/K non-overlapping chunks. The encoder, fenc, then transforms the original
sequence into a new, more compact sequence of continuous vectors:

Z = (z1, z2, . . . , zL), where zi = fenc(x(i−1)K+1, . . . , xiK). (5)
Consequently, the autoregressive objective evolves to predicting the next vector in the sequence:

p(Z) =

L∏
i=1

p(zi|z<i). (6)

While this autoregressive structure is preserved, the underlying mechanism for predicting the next
element must be redesigned. Unlike standard language models, which rely on a softmax layer to
compute a probability distribution over a finite vocabulary, our model must predict a vector within
the infinite space Rl. The softmax function is not applicable over this uncountable set, rendering the
explicit probability density p(zi|z<i) intractable. This introduces two critical challenges:

• Training: The likelihood p(zi|z<i) becomes intractable, precluding the use of maximum
likelihood estimation (i.e., minimizing cross-entropy loss) for training.

• Evaluation: Standard evaluation metrics like Perplexity, which are derived directly from
the model’s likelihood, can no longer be computed to measure model performance.

We address both of these challenges in turn. For the training problem, we introduce our approach to
likelihood-free language modeling in the remainder of this section. For the evaluation problem, we
propose a likelihood-free evaluation methodology in Section 4.

3.2 GENERATIVE HEAD

Generative modeling of continuous data (Kingma & Welling, 2014; Goodfellow et al., 2014; Ho
et al., 2020) is a well-established field, foundational to domains such as image and audio synthesis
where data is inherently continuous. A promising recent paradigm (Tschannen et al., 2023; Li et al.,
2024; Shao et al., 2025b) combines these approaches with autoregressive models: a Transformer
backbone predicts a conditioning hidden state, which is used by a subsequent generative model to
produce the continuous output for each step. Our Continuous Autoregressive Language Models
(CALM) adapts this paradigm, but with a critical focus on computational efficiency that constrains
the design of this generative component. We therefore conceptualize this component as a lightweight
generative head. Formally, the generative head is a stochastic function that takes the Transformer’s
hidden state, hi−1 ∈ Rd, and draws a sample zi ∈ Rl from the conditional distribution:

hi−1 = Transformer(z1:i−1), zi ∼ p(·|hi−1). (7)

While the generative head can be any continuous generative model, prominent options like Dif-
fusion (Ho et al., 2020; Li et al., 2024; Fan et al., 2025) or Flow Matching (Lipman et al., 2023;
Ren et al., 2025a;b) are misaligned with our goal of efficiency. These models rely on an iterative
sampling process—requiring dozens or even hundreds of network evaluations to produce a single
vector—which directly counteracts the speedup gained from reducing the number of autoregres-
sive steps. The CALM architecture therefore demands a generative head capable of high-quality,
single-step generation, a challenge we address next with an energy-based objective.

3.3 ENERGY TRANSFORMER

3.3.1 STRICTLY PROPER SCORING RULES

To meet the demand for a generative head capable of high-quality, single-step generation, we draw
inspiration from Shao et al. (2024; 2025b), which frames the generative task as the optimization of
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strictly proper scoring rules (Gneiting & Raftery, 2007). Formally, a scoring rule S(P, y) assigns
a numerical score to a predictive distribution P upon observing an outcome y, where higher scores
are better. The quality of a forecast P against the true data-generating distribution Q is measured by
its expected score, defined as S(P,Q) = Ey∼Q[S(P, y)]. A scoring rule is considered proper if the
expected score is maximized when the predictive distribution P matches the data distribution Q:

S(P,Q) ≤ S(Q,Q) for all distributions P. (8)

This property ensures that the scoring rule does not incentivize the model to predict a biased or
distorted distribution. Furthermore, a scoring rule is strictly proper if equality holds only when
P = Q, meaning that the optimal score can only be achieved by reporting the true distribution.

The use of a strictly proper scoring rule as a training objective is therefore a powerful and princi-
pled approach for training our generative head, as maximizing the expected score is equivalent to
driving the model’s predictive distribution to match the true distribution. This principle offers a di-
rect generalization of maximum likelihood estimation, where the negative log-likelihood is a special
case corresponding to the logarithmic score (Good, 1952). While the likelihood is intractable in the
continuous domain, the theory of scoring rules provides a rich family of alternatives.

3.3.2 ENERGY LOSS

We build our training objective using the Energy Score (Székely, 2003), a strictly proper scoring rule
that has proven effective across a range of generative applications (Gritsenko et al., 2020; Vahidi
et al., 2024; Pacchiardi et al., 2024; Shao et al., 2025b; Ma et al., 2025). The energy score is entirely
likelihood-free; rather than evaluating probability densities, it measures the alignment between the
prediction and the observation via sample distances. For a predictive distribution P and a ground
truth observation y, the energy score is defined as:

S(P,y) = Ex′,x′′∼P [∥x′ − x′′∥α]− 2 Ex∼P [∥x− y∥α], (9)

where x, x′ and x′′ are independent samples drawn from P . The score is strictly proper for any
α ∈ (0, 2). Typically, α is set to 1. The first term encourages diversity, penalizing the model for
producing collapsed or overly confident predictions where all samples are identical. The second
term encourages fidelity, driving the model’s predictions to be close to the ground truth observation.

While the expectations in Equation 9 make the energy score intractable to compute exactly, we can
construct an unbiased Monte Carlo estimator to serve as a practical loss function, which we term the
energy loss. To do this, we draw N candidate samples, {z̃i,1, . . . , z̃i,N}, from the generative head at
each step i. Furthermore, we leverage a unique property of our setup: our autoencoder does not map
a token chunk to a fixed point, but rather to a conditional Gaussian posterior zi ∼ q(·|x(i−1)K+1:iK).
Relying on a single sample zi as ground-truth can introduce high variance into the energy loss. To
mitigate this and stabilize training, we draw M target samples, {zi,1, . . . , zi,M}, from this posterior.
Combining these sample sets, the final energy loss is formulated as:

Lenergy =

L∑
i=1

(
2

NM

N∑
n=1

M∑
m=1

∥zi,m − z̃i,n∥ −
1

N(N − 1)

∑
n̸=k

∥z̃i,n − z̃i,k∥). (10)

In practice, we set N=8 and M=100. The number of model samples N directly scales the training
cost, as each sample requires an evaluation of the generative head; we therefore use a small N to
maintain high training efficiency. The overhead of drawing target vectors from a known Gaussian
posterior is almost negligible, which allows us to use a large M to reduce the variance of loss.

A key advantage of this likelihood-free training objective is its flexibility: it only requires the ability
to draw samples from the generative head, placing minimal constraints on its internal architecture
and allowing for the simple and efficient designs we explore next.

3.3.3 MODEL ARCHITECTURE

We now detail our model architecture. We use a standard Transformer backbone, with modifications
focused on the output-side generative head and the input-side adaptation.

Energy-Based Generative Head. The inputs to the generative head are twofold: the hidden state
hi−1 from the Transformer backbone, which provides the conditional context, and a random noise
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Input Tokens

Token Em-
beddings

Input Com-
pression MLP

Transformer
Backbone

Energy-Based
Generative Head

h

Random Noise ε0

Linear

εL

AE Decoder

z

Output Tokens

εl h

Linear

Linear

SwiGLU

+

εl+1

×L

Figure 2: The Architecture of the Continuous Autoregressive Language Model (CALM). Left: The
main autoregressive loop where discrete tokens are compressed to condition a Transformer, whose
output hidden state h guides an energy-based head to predict a continuous vector z. The AE decoder
then maps z back to discrete tokens for the next step. Right: A detailed view of the generative head,
showing how it refines a noise vector ε0 through a series of residual MLP blocks.

vector ε ∈ Rdnoise , which provides the necessary stochasticity for sampling. Each dimension of ε is
drawn independently from a uniform distribution U [−0.5, 0.5]. Both the hidden state hi−1 and the
noise vector ε are projected by independent linear layers to match the head’s internal dimension,
which we set to match the Transformer’s hidden dimension d.

The core of the generative head is a stack of L residual MLP blocks that progressively refine the
initial noise representation ε0 = ε into the final output vector. As illustrated in Figure 2, each MLP
block first fuses the current representation εl with the hidden state via two linear layers. This is
followed by a SwiGLU layer (Shazeer, 2020b) with an intermediate dimension of d. A residual
connection then adds the block’s input to its output. This process concludes with a final linear layer
that projects the representation to the target dimension l, producing the output vector zi.

A single MLP block contains approximately 6d2 parameters. We set the number of blocks to a
quarter of the number of Transformer layers; the entire generative head therefore accounts for only
about 10% of the total model parameters, making its computational overhead minimal.

Discrete Token Input. An intuitive approach for the model’s input would be to embed the pre-
dicted latent vectors zi−1 from the previous step into the Transformer’s hidden dimension d using
a linear projection. However, we empirically found that using these latent vectors as input for the
Transformer leads to a noticeable degradation in performance, as the model struggles to unpack the
semantic information from such a compact input representation.

To circumvent this, we ground the model’s autoregressive process in the discrete token space. Dur-
ing training, the input for each step is formed by the K tokens from the previous step. To maintain
efficiency, we use a lightweight input compression module—a two-layer MLP—to map the K em-
beddings into a single input representation. The inference process unfolds as follows:

1. Input Processing: At step i, the previously generated chunk of K tokens are embedded and
compressed into a single input representation and fed into the Transformer.

2. Continuous Prediction: The Transformer outputs the hidden state hi−1, which our energy-
based generative head then uses to predict the next continuous vector, zi.
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3. Discrete Feedback Loop: The predicted vector zi is immediately passed through the frozen
decoder of our pre-trained autoencoder, gdec, to reconstruct the next K discrete tokens.

The complete architecture of CALM is illustrated in Figure 2.

4 LIKELIHOOD-FREE LM EVALUATION

4.1 PRINCIPLES OF LM EVALUATION

The CALM framework operates as an implicit generative model, whose predictive probability dis-
tribution is defined by its sampling process. Consequently, standard LM evaluation metrics like
Perplexity, which are defined in terms of explicit likelihoods, can no longer be employed to measure
model performance. Furthermore, the energy loss used for training is itself unsuitable for evaluation,
as its magnitude is subjective to the specific latent space shaped by the autoencoder. This necessi-
tates the development of a model-agnostic evaluation metric, one that can faithfully assess language
modeling capabilities in a principled, yet entirely likelihood-free, manner.

The goal of a evaluation metric is to quantify the divergence between the model’s predictive distri-
bution, P , and the true data distribution, Q. This principle is formalized by the property that the
metric is uniquely optimized when the model accurately recovers the data distribution (P = Q).
This ensures the evaluation is fair and cannot be hacked by a model that systematically distorts its
predictions. For instance, the conventional metric of Perplexity serves as a prime example of this
principle. It is grounded in the expected negative log-likelihood, which can be decomposed into the
sum of the KL divergence and data entropy:

Ey∼Q[− logP (y)] = Ey∼Q

[
log

Q(y)

P (y)

]
+ Ey∼Q[− logQ(y)] = DKL(Q∥P )︸ ︷︷ ︸

Minimized at P=Q

+H(Q)︸ ︷︷ ︸
Constant

. (11)

This property establishes Perplexity as a theoretically sound measure of a model’s capability to
capture the true distribution, which is uniquely minimized when P = Q.

In contrast, a naive metric like the raw likelihood of the observed outcome, P (y), fails this principle.
The expected score under this metric, Ey∼Q[P (y)], is maximized by a deterministic prediction that
assigns a probability of 1 to the single most frequent outcome, i.e., P (argmaxy Q(y)) = 1. Such a
metric would therefore incorrectly favor an overconfident model that fails to capture the underlying
data uncertainty. This highlights a critical distinction: a principled metric must balance rewarding
accuracy with correctly representing the predictive uncertainty. The naive likelihood P (y) only
addresses the former, making it an inadequate measure of a model’s predictive quality.

4.2 BRIERLM: BRIER FOR LANGUAGE MODELING

For a principled and likelihood-free evaluation, we turn to the Brier score (Brier, 1950), a classic
strictly proper scoring rule now widely used to assess the calibration of modern neural networks
(Lakshminarayanan et al., 2017; Ovadia et al., 2019; Gruber & Buettner, 2022). For a predictive
distribution P and a ground-truth outcome y, the Brier score is defined as:

Brier(P, y) = 2P (y)−
∑
x

P (x)2. (12)

Unlike the raw likelihood P (y), which solely measures accuracy, the Brier score incorporates an ad-
ditional term,

∑
x P (x)2, to quantify predictive uncertainty. This structure balances two competing

objectives, which ultimately rewards a well-calibrated prediction. This property is revealed by the
following decomposition of the expected Brier score:

Ey∼Q[Brier(P, y)] = −
∑
x

(P (x)−Q(x))2︸ ︷︷ ︸
Squared Error (minimized at P=Q)

+
∑
x

Q(x)2︸ ︷︷ ︸
Data Variance (constant)

. (13)

While the Brier score is theoretically sound, its direct computation remains intractable for CALM,
as it requires knowledge of the full predictive distribution P . We find, however, that an unbiased
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Monte Carlo estimator for the Brier score can be constructed in an entirely likelihood-free manner,
using only samples drawn from the model. Specifically, the uncertainty term,

∑
x P (x)2, can be

interpreted as the collision probability of two independent samples. Therefore, its unbiased estimator
is simply the indicator function I{x1 = x2}, where x1, x2 ∼ P . Similarly, the accuracy term P (y)
can be estimated by I{x = y} using a single sample x ∼ P . Combining these, we construct a
practical, unbiased estimator for the Brier score using two samples drawn from the model:

Brier(P, y) ≈ I{x1 = y}+ I{x2 = y} − I{x1 = x2}, x1, x2 ∼ P. (14)

This estimator enables a likelihood-free evaluation of CALM’s predictive capabilities. A straight-
forward approach is to assess next-token prediction performance in a teacher-forcing setting. This
would involve generating two latent vectors at each step, decoding them using the frozen autoen-
coder’s decoder, and computing the Brier score using only the first token of each resulting chunk.
However, such an evaluation is insufficient as it ignores the generation quality of the remaining
K − 1 tokens. To address this limitation, we further introduce Brier-n, a metric that computes the
Brier score over entire n-grams. In this formulation, the indicator functions of the estimator treat the
n-gram as a single, atomic outcome. Finally, following the convention of established n-gram-based
metrics like BLEU (Papineni et al., 2002), we define our composite metric, BrierLM (Brier for Lan-
guage Modeling), as the geometric mean of Brier-n scores for n = 1 to 4, which we then scale by
100 to place it on a more interpretable 0-100 range:

BrierLM = 100 ·

(
4∏

n=1

Brier-n

)0.25

. (15)

The utility of BrierLM extends beyond CALM, serving as a universal evaluation protocol that is
also applicable to conventional autoregressive models. For such models, the BrierLM estimator can
be applied by simply drawing samples from the final softmax distribution, enabling direct and fair
comparisons with our likelihood-free framework. To validate this, we evaluated both cross-entropy
and BrierLM throughout the training of our baseline autoregressive models (detailed in Section 7.1).
Figure 3 visualizes the joint distribution of the two metrics. Intriguingly, we find that BrierLM
is highly consistent with cross-entropy loss, exhibiting a nearly linear relationship with a Pearson
correlation coefficient of -0.966 and a Spearman’s rank correlation of -0.991. This strong monotonic
alignment confirms that BrierLM is a reliable measure of language modeling capability, establishing
it as a trustworthy likelihood-free alternative to Perplexity.
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Figure 3: Joint distribution of the cross-entropy loss and the BrierLM score across different models
and training checkpoints.

Furthermore, BrierLM offers a particularly significant advantage for the growing class of implicit
generative models, such as diffusion-based language models (Austin et al., 2021; Han et al., 2023;
Lou et al., 2024; Arriola et al., 2025). These models have historically been challenging to eval-
uate, often relying on the complex and sometimes loose estimation of variational lower bounds
(ELBOs) to approximate Perplexity. BrierLM circumvents this entire challenge, offering a direct,
unbiased method to faithfully assess their language modeling capabilities and enabling fair compar-
isons across different model families.
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Algorithm 1 Likelihood-free Temperature Sampling
Input: A base sampler S for an implicit discrete distribution P (x); A target temperature T ∈ (0, 1)
Output: Sample x accepted with probability PT (x) ∝ P (x)1/T

1: procedure SAMPLEATTEMPERATURE(S, T )
2: n← ⌊1/T ⌋. ▷ Integer part of 1/T
3: α← 1/T − n. ▷ Fractional part, 0 ≤ α < 1
4: Stage 1: Integer Part (n)
5: Draw n i.i.d. samples x1, . . . , xn ∼ S
6: if x1 = · · · = xn then
7: x∗ ← x1 ▷ Find candidate x∗

8: else
9: restart from stage 1 ▷ Rejection

10: if α = 0 then
11: return x∗ ▷ Accept x∗ as Stage 2 is not needed
12: Stage 2: Fractional Part (α)
13: i← 1
14: loop
15: Draw x ∼ S
16: if x = x∗ then
17: return x∗ ▷ Accept candidate
18: else
19: Draw u ∼ U(0, 1) ▷ Uniform distribution
20: if u < α/i then
21: restart from stage 1 ▷ Rejection
22: else
23: i← i+ 1 ▷ Continue to next iteration

5 LIKELIHOOD-FREE TEMPERATURE SAMPLING

5.1 EXACT TEMPERATURE SAMPLING VIA REJECTION

Controlled generation via temperature sampling is an indispensable feature of modern LLMs. Con-
ventionally, this technique is implemented by rescaling pre-softmax logits, a mechanism that re-
quires explicit access to the model’s probability distribution. However, this approach is incompatible
with our CALM framework, whose generative head is likelihood-free and provides only a sampler.
This presents a critical challenge: performing temperature sampling with only a black-box sam-
pler. In this section, we address this challenge by developing an exact algorithm, grounded in the
principles of rejection sampling, that provably achieves this goal.

The intuition for our algorithm stems from the relationship between repeated sampling and prob-
ability exponentiation. In the context of CALM, a sample x corresponds to a complete chunk of
K tokens produced at each step. Consider the simple case where the temperature T = 1/n for an
integer n, which makes the target distribution PT (x) ∝ P (x)n. The probability of drawing the exact
same sample x in n independent trials from the sampler is also P (x)n. This motivates an elegant
rejection sampling scheme: we draw n samples and accept them if and only if all n samples are
identical. Otherwise, we reject the entire set and restart the process. The distribution of accepted
samples is thus provably proportional to P (x)n, providing a foundation for our general algorithm.

To generalize this approach for any arbitrary temperature T ∈ (0, 1), we decompose the exponent
1/T into its integer part, n = ⌊1/T ⌋, and fractional part, α = 1/T − n. This decomposition
structures our algorithm as a two-stage rejection sampling process. The first stage handles the integer
component n using the repetition-based scheme described above, producing a candidate sample x
only if n independent draws are identical. The second stage, which handles the fractional exponent
α, requires a more subtle approach. Here, we draw upon the theory of Bernoulli Factory (Keane &
O’Brien, 1994; Mendo, 2019) to construct an iterative procedure that simulates a biased coin flip
with a success probability of P (x)α. A sample is accepted only if it passes both stages; failure at
any point triggers a restart of the entire process. The complete procedure is formally detailed in
Algorithm 1. The following theorem guarantees its correctness.
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Theorem 1. For an implicit discrete distribution P (x) with sampler S and a temperature T ∈ (0, 1),
Algorithm 1 generates samples distributed as:

PT (x) =
P (x)1/T

ZT
, ZT =

∑
x

P (x)1/T .

The proof is provided in Appendix A.1.

5.2 EXPECTED SAMPLING COST

While Algorithm 1 provides an exact solution for likelihood-free temperature sampling, its practical
viability hinges on its computational efficiency. A central concern is the expected number of samples
it requires, as each sampler call involves a forward pass through the generative head and autoencoder.
Although these forward passes can be executed in parallel during inference, a prohibitively large
number of samples would still create a significant computational bottleneck. The following theorem
provides a closed-form expression for this expected number of sampler calls, with Corollary 2.1
offering a more interpretable upper bound. The proof is provided in Appendix 2.

Theorem 2. The expected number of calls to the base sampler S, denoted E[Ntotal], required to
generate one sample using Algorithm 1 is:

E[Ntotal] =
n+ I(α > 0)

∑
x P (x)1/T−1

ZT

where ZT =
∑

x P (x)1/T , n = ⌊1/T ⌋, α = 1/T − n, and I(·) is the indicator function.

Corollary 2.1. Let |X | be the size of sample space. The expected number of sampler calls E[Ntotal]
at temperature T ∈ (0, 1) is bounded by:

E[Ntotal] ≤


1 + n

ZT
, if 0 < T ≤ 0.5

1 + |X |2−1/T

ZT
, if 0.5 < T < 1

where n = ⌊1/T ⌋ and ZT =
∑

x P (x)1/T .

These results highlight that the algorithm’s practicality is highly sensitive to the temperature T . A
potential limitation first emerges for T → 1, as the cost can scale up to the size of sample space
|X | = |V|K . It is therefore advisable to avoid using temperatures in this high-temperature regime
to prevent a potential computational bottleneck. Conversely, at low temperatures, the integer part
n = ⌊1/T ⌋ becomes large. The algorithm’s success requires drawing n identical samples, an event
with a vanishingly small probability for a large n that leads to an extremely high rejection rate. A
more sample-efficient approximate algorithm is therefore needed to enhance its practical utility.

5.3 BATCH APPROXIMATION

The practical limitations of the exact algorithm become most pronounced in the low-temperature
regime, where the requirement of drawing n = ⌊1/T ⌋ identical samples leads to an extremely
high rejection rate that results in poor sample utilization. To address this, we propose an efficient
approximate algorithm tailored for low temperatures of the form T = 1/n. The key insight is to shift
from a single, high-risk trial to a combinatorial search within a large batch of N samples (N ≫ n).
This shift allows a single batch to constitute

(
N
n

)
distinct candidates, which dramatically improves

sample utilization and increases the probability of finding a successful match in a single round.

For example, to sample at T = 0.5(n = 2), we might draw a batch of N = 10 samples, such
as {A,C,A,D,B,E,A, F,B,G}. Here, sample A appears three times, and sample B appears
twice. The algorithm then counts the number of successful n-tuple candidates within this batch. For
sample A, there are

(
3
2

)
= 3 successful candidates. For sample B, there is only

(
2
2

)
= 1 successful

candidate. Finally, the output is sampled from the set of valid candidates {A,B} according to their
weighted probabilities, where P (A) = 3/4 and P (B) = 1/4. In the rare case that no sample
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Algorithm 2 Approximate Temperature Sampling
Input: A base sampler S; Target temperature T = 1/n; Batch size N ≫ n.
Output: A sample x approximating the distribution PT (x) ∝ P (x)n.

1: procedure APPROXIMATETEMPSAMPLE(S, n,N )
2: Draw a batch of N samples B = {x1, . . . , xN} from sampler S.
3: Compute counts cx for each unique sample x ∈ B.
4: for m← n down to 1 do ▷ Start with the target n and fallback if needed
5: Initialize candidate set Xcand ← ∅.
6: Initialize weights list W ← ∅.
7: for each unique sample x with count cx ≥ m do
8: Add x to Xcand.
9: Add weight wx =

(
cx
m

)
to W . ▷ Weight is the number of combinations

10: if Xcand is not empty then
11: break ▷ Found a valid candidate set, exit fallback loop
12: Sample xout from Xcand with probabilities proportional to weights in W .
13: return xout

appears at least n times, the candidate set would be empty. To ensure the algorithm always produces
an output, we introduce a fallback mechanism that iteratively reduce the matching requirement from
n to n − 1, n − 2, . . . , until a non-empty candidate set is found. The detailed process is illustrated
in Algorithm 2.

For any finite batch size N , the algorithm is biased. This bias arises because the output probability
is determined by the ratio of weights calculated within a single stochastic batch, and the expectation
of a ratio is generally not equal to the ratio of expectations. However, its key strength is that it is
asymptotically unbiased: as the batch size N approaches infinity, the output distribution converges
to the true target distribution. We formalize this crucial property in the following theorem.

Theorem 3. Let Palg(x;N) be the probability of sampling x using Algorithm 2 with a batch size
of N , and let PT (x) = P (x)n/ZT be the true target distribution at temperature T = 1/n, where
ZT =

∑
x P (x)n. The algorithm is asymptotically unbiased:

lim
N→∞

Palg(x;N) = PT (x).

The proof is provided in Appendix A.3. This property of consistency establishes the algorithm
as a principled approximation, where the batch size N serves as a practical lever for the trade-
off between efficiency and accuracy. Because the algorithm relies solely on a black-box sampling
interface, its utility extends naturally beyond the CALM framework to the entire class of implicit
language models. This positions it as a universal toolkit for controlled decoding in discrete spaces.

6 RELATED WORK

6.1 AUTOENCODER

Latent Generative Modeling. A prominent paradigm in generative modeling involves a two-stage
process: first learning a compressed latent representation of the data, and then training a generative
model within that latent space. This approach often begins with a Variational Autoencoder (Kingma
& Welling, 2014), which learns a mapping from a high-dimensional data space into a compact, con-
tinuous latent space. This principle enables modern architectures, such as latent diffusion models
(Rombach et al., 2022; Liu et al., 2023), to efficiently generate high-dimensional data from a con-
tinuous latent representation. An alternative path, the Vector Quantized VAE (VQ-VAE, van den
Oord et al., 2017), learns a discrete latent space by mapping inputs to a finite, learned codebook.
This approach has been foundational to the autoregressive generation of continuous data like images
(Razavi et al., 2019; Esser et al., 2021; Ramesh et al., 2021; Sun et al., 2024a) and audio (Dhariwal
et al., 2020; Zeghidour et al., 2021; Défossez et al., 2023). Our approach introduces a distinct way
by performing a discrete-to-continuous mapping. Driven by the pursuit of efficiency, it significantly
reduces the number of autoregressive steps required for language generation.
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Text Compression. Compressing long text into compact vector representations is a foundational
concept in sequence modeling. For instance, Recurrent Neural Networks can be viewed as implic-
itly compressing the entire history of a sequence into a single hidden state vector (Elman, 1990;
Hochreiter & Schmidhuber, 1997). In the era of LLMs, this concept has been revitalized, with a fo-
cus on prompt compression to improve inference efficiency. For example, Mu et al. (2023) designed
a modified attention mechanism to distill prompt information into a few memory tokens. Chevalier
et al. (2023); Ge et al. (2024); Gao et al. (2024) further introduced explicit reconstruction objectives
to promote high fidelity compression. Recently, Li et al. (2025); Kuratov et al. (2025); Mezentsev
& Oseledets (2025) pushed the limits of compression to a ratio up to 1568x, underscoring the in-
herent sparsity of discrete text representations. More recently, DeepSeek-OCR (Wei et al., 2025)
demonstrated compressing text into continuous image tokens, showing promise for applications like
long-context compression. The primary focus of these methods on prompt compression places a
greater emphasis on reconstruction fidelity than on the robustness of the resulting representation.
Our work, by contrast, prioritizes the creation of a robust and smooth latent manifold, which is a
critical prerequisite for stable downstream generative modeling.

6.2 LIKELIHOOD-FREE LANGUAGE MODELING

Continuous Autoregressive Generation. Autoregressive generation over continuous vectors is an
emerging research frontier, with notable successes in domains such as image (Tschannen et al., 2023;
Li et al., 2024; Shao et al., 2025b; Fan et al., 2025; Team, 2025), video (Chen et al., 2024; Deng
et al., 2025), and audio synthesis (Turetzky et al., 2024; Sun et al., 2024b; Ma et al., 2025). GIVT
(Tschannen et al., 2023) pioneered this direction by fitting the distribution of the target vector with
a Gaussian Mixture Model. However, the expressive power of GIVT is confined to the pre-defined
family of Gaussian mixtures, a constraint that limits its ability to capture complex distributions.
Li et al. (2024) overcomes this limitation by employing a lightweight diffusion head to model the
vector distribution. While being more expressive, this method comes at the cost of inference effi-
ciency due to its iterative sampling process. More recently, Shao et al. (2025b) introduced a general
framework based on strictly proper scoring rules. The Energy Transformer was presented as a con-
crete and powerful instance of this framework, capable of high-quality, single-step generation. Our
work adopts the core Energy Transformer framework but introduce several key improvements to the
generative head architecture, the energy loss, and the model’s input structure, to further enhance its
performance and stability for the specific challenges of language modeling.

Parallel Token Prediction. The goal of predicting multiple tokens in parallel to overcome the
sequential bottleneck of autoregressive models is a long-standing pursuit in sequence modeling.
Early efforts in this area were pioneered by non-autoregressive machine translation (Gu et al., 2018;
Gu & Kong, 2021; Shao et al., 2021; Shao & Feng, 2022; Huang et al., 2022; Gui et al., 2023), which
aims to generate an entire target sentence in a single step. While effective for highly constrained
conditional tasks like translation, these methods often struggle with the inherent multi-modality of
open-ended language generation. A different line of work uses multi-token prediction to enrich
training signals (Gloeckle et al., 2024; Shao et al., 2025a) or provide candidates for speculative
decoding (Stern et al., 2018; Leviathan et al., 2023), while the underlying generation remains single-
token autoregressive. A more direct approach involves hierarchical modeling, where a global model
predicts large semantic chunks, which are then decoded by a local model (Lee et al., 2022; YU et al.,
2023; Ho et al., 2024; team et al., 2024; Pagnoni et al., 2025; Neitemeier et al., 2025). For instance,
MegaByte (YU et al., 2023) uses a global Transformer to predict blocks of tokens, but still relies on a
local autoregressive model to generate tokens sequentially within each block. Conceptually closer to
our work, Large Concept Models (team et al., 2024) also adopt a hierarchical structure, where their
global model autoregressively predicts continuous sentence embeddings. However, this approach
faces several challenges that our CALM framework is designed to address: its SONAR autoencoder
(Duquenne et al., 2023) is computationally heavy and fragile, and its reliance on a diffusion-based
generative process introduces a iterative inference bottleneck. Finally, another paradigm for parallel
generation is diffusion models for text, which iteratively refine a sequence of tokens from noise,
either at the full sentence (Austin et al., 2021; Li et al., 2022; Lou et al., 2024) or block level (Han
et al., 2023; Arriola et al., 2025). These models, which currently operate in the challenging discrete
token space, could potentially benefit from the robust continuous space our autoencoder provides.
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6.3 LIKELIHOOD-FREE LM EVALUATION

LM metrics. The evaluation of language models is split into two distinct paradigms, which reflects
the separation between assessing the quality of generated output and the fidelity of the learned
distribution. On one hand, likelihood-based metrics, such as Perplexity, offer a principled way to
evaluate the learned distribution, but they are limited to models where likelihoods are tractable. On
the other hand, a diverse family of sample-based metrics focuses on the generated output. Classic
methods like BLEU (Papineni et al., 2002) and ROUGE (Lin, 2004) assess the quality of generated
text by comparing it to reference outputs. More recent approaches such as MAUVE (Pillutla et al.,
2021) or LLM-as-a-judge (Zheng et al., 2023) allows for reference-free evaluation, but they rely
on heuristics or black-box models and lack the formal guarantees of scoring rules. Our proposed
metric, BrierLM, is designed to bridge this gap by combining the advantages of both paradigms:
it operates exclusively on model samples, yet as a strictly proper scoring rule, it offers a faithful
assessment of the model’s predictive quality, akin to perplexity.

Brier Score. The Brier Score was originally proposed by Brier (1950) for the evaluation of prob-
abilistic weather forecasts. It is a classic example of a strictly proper scoring rules, theoretically
guaranteeing that a model is incentivized to report its true belief to achieve the optimal score (Gneit-
ing & Raftery, 2007). Consequently, it has been widely adopted in classification tasks, primarily for
evaluating the quality of probabilistic forecasts (Sanders, 1963; fer, 2009; Hui & Belkin, 2021) and
assessing model calibration (Lakshminarayanan et al., 2017; Ovadia et al., 2019; Gruber & Buettner,
2022). The innovation of our work is twofold: first, we introduce a method to unbiasedly estimate
the Brier score in a likelihood-free manner; second, we generalize its application from a metric for
simple classification tasks to one capable of assessing language modeling capabilities.

6.4 LIKELIHOOD-FREE TEMPERATURE SAMPLING

Bernoulli Factory. The temperature sampling problem is conceptually related to the classic problem
of the Bernoulli Factory (Keane & O’Brien, 1994; Occil, 2020), which addresses the challenge of
simulating a new coin with a success probability of f(p) given only a coin with an unknown success
probability p. This mirrors our challenge of achieving a target probability proportional to P (x)1/T

using only a base sampler for the implicit distribution P (x). A key distinction is that the Bernoulli
Factory problem assumes a binary outcome, whereas we operate over a large discrete sample space.
Our two-stage algorithm elegantly bridges this gap. The first stage isolates a single candidate x∗

and reduces the problem to a binary one, and the second stage directly applies an existing Bernoulli
Factory algorithm (Mendo, 2019) to construct an event with probability P (x∗)α.

Controlled Generation. While many generative models lack the explicit probabilistic controls for
temperature sampling, they have developed alternative strategies to navigate the trade-off between
sample quality and diversity. For instance, VAEs and normalizing flows (Kingma & Welling, 2014;
Rezende & Mohamed, 2015) often achieve this by adjusting the variance of their prior latent distri-
bution (Kingma & Dhariwal, 2018). In Generative Adversarial Networks (Goodfellow et al., 2014),
the truncation trick restricts sampling to a high-density region of the latent space (Brock et al., 2019).
Similarly, diffusion models can control stochasticity by altering the noise variance during the reverse
sampling process (Song et al., 2021). These techniques, however, are fundamentally heuristic, as
it is generally intractable to characterize the shape of the modified output distribution, and they all
require white-box access to model internals like the latent space. Our work, in contrast, proposes a
universal, black-box algorithm for temperature sampling from implicit models over discrete spaces,
offering a provably exact method for this broad class of models.

7 EXPERIMENTS

7.1 SETTINGS

Datasets. We train our models on the Pile uncopyrighted dataset (Gao et al., 2020). The raw text is
processed with the Llama 3 tokenizer (Grattafiori et al., 2024), resulting in a training set of ∼230B
tokens. We evaluate model performance on the WikiText-103 benchmark (Merity et al., 2017).

Model. Our models are built upon a standard Transformer backbone. We adopt most of the ar-
chitecture designs from the LLaMA family (Touvron et al., 2023), including RMSNorm (Zhang &
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Table 1: Performance and computational cost comparison between Transformer baselines and
CALM (K=4). CALM’s reported parameter counts and FLOPs include all overhead from the au-
toencoder (75M parameters, training cost, and encoding/decoding FLOPs). Attention FLOPs are
calculated assuming a context length of 2048.

Model #Params Train FLOPs Infer FLOPs BrierLM(total, 1e20) (per token, 1e8)

Transformer-S 281M 6.6 4.4 6.05
Transformer-M 465M 11.9 7.9 7.07
Transformer-L 849M 22.5 15.0 8.98

CALM-M (K=4) 371M 3.7 2.9 5.72
CALM-L (K=4) 735M 7.7 4.6 6.58

CALM-XL (K=4) 1.82B 19.5 9.4 8.53

Sennrich, 2019), SwiGLU activation (Shazeer, 2020a), and rotary positional embeddings (Su et al.,
2021). We experiment with four scales: S (12 layers, hidden size=768, intermediate size=2048), M
(16 layers, hidden size=1024, intermediate size=2752), L (16 layers, hidden size=1536, intermedi-
ate size=4096), and XL (16 layers, hidden size=2560, intermediate size=6880).

Training Details. The training process for our CALM framework is two-staged. We first train a
suite of autoencoders on a 15B token subset of the Pile to map token chunks of size K ∈ {1, 2, 4, 8}
into continuous vectors. These autoencoders use a hidden size of 512, a latent dimension of 32K,
have approximately 75M parameters, and are trained for 30k steps with a batch size of 512k tokens.
Following this, the CALM models are trained on the remaining data for 250k steps with a batch size
of 2 million tokens. The context length is set to 2048 steps; for CALM, this corresponds to 2048K
tokens. All models are optimized using the AdamW optimizer (Loshchilov & Hutter, 2019) with
β1 = 0.9, β2 = 0.95, ϵ = 1e− 8. We use a learning rate of 3× 10−4 with a constant schedule and
a warmup of 2000 steps, a weight decay of 0.1, and gradient clipping of 1.0.

7.2 MAIN RESULTS

We present the primary results of our comparison between the standard Transformer baselines and
our CALM framework (with a fixed chunk size of K=4) in Table 1. The results demonstrate that
CALM establishes a new, more efficient performance-compute frontier for language modeling. By
increasing the semantic bandwidth of each autoregressive step, CALM is allowed to be substantially
larger in parameter count while demanding fewer FLOPs for both training and inference. For in-
stance, our 371M parameter CALM-M model achieves a BrierLM score comparable to the 281M
Transformer-S baseline, yet requires 44% fewer training FLOPs and 34% fewer inference FLOPs.
Furthermore, the results confirm that CALM benefits from scaling just as effectively as traditional
Transformers, allowing performance to be consistently improved by increasing model size.

In addition to scaling model size, our framework introduces the semantic bandwidth K as a new
lever for navigating the performance-compute landscape. Figure 4 illustrates this by plotting the
performance of CALM-L with varying K against the standard Transformer scaling curve. Notably,
CALM-L with K = 1 operates at a significant disadvantage, demanding more FLOPs for lower
performance compared to its discrete counterpart. The gap arises because the model undertakes
the more challenging continuous prediction task, which in turn highlights the significant room for
future architectural and algorithmic optimizations. The advantages of CALM become apparent as
we increase K. Moving from K = 1 to K = 2 nearly halves the cost with only a marginal drop in
performance, and at K = 4, the CALM model surpasses the baseline performance-compute frontier.
This finding validates our central hypothesis: scaling the semantic bandwidth of each generative
step provides a new and highly effective axis for optimizing the performance-compute trade-off in
language models. Further increasing the chunk size to K = 8 leads to a larger performance drop,
which is likely a model capacity limitation. We hypothesize that larger models may be required to
leverage the benefits of higher semantic bandwidths.
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Figure 4: The effect of chunk size K on the
performance-compute trade-off.

0 50 100 150 200 250
Training Steps (k)

0

2

4

6

8

10

Br
ie

rL
M

Transformer-L
Transformer-M
CALM-XL

Figure 5: Training progress of CALM and tra-
ditional Transformer models.

To further investigate the learning dynamics of our framework, we plot the training curves of CALM-
XL against the Transformer baselines in Figure 5. The baseline Transformer models exhibit rapid
initial gains before their performance gradually begins to saturate. In contrast, CALM-XL displays
a more patient but ultimately steeper learning curve, initially trailing Transformer-M but progres-
sively closing the performance gap with the Transformer-L model. We attribute this phenomenon
to the different nature of the predictive task. While the baseline models learn the relatively simple
task of predicting a single, low-information discrete token, our CALM model must learn to model
the complex, high-dimensional distribution of continuous vectors, which explains the slower initial
progress. However, once this ability is established, the model can unlock the potential of its large
parameter count, entering a phase of more significant and sustained improvements.

7.3 EFFECT OF AUTOENCODER

In this section, we study the effect of the autoencoder’s design choices on the final performance
of the CALM framework. The autoencoder is a critical component, as it defines the latent space
in which the continuous language model operates. To isolate its effects, we hold the downstream
language model fixed across all experiments in this section: an Energy Transformer with a hidden
size of 768, 12 hidden layers, 16 attention heads, an FFN intermediate size of 2048, and a generative
head with 3 MLP blocks. Each model configuration is trained for 50,000 steps. Unless otherwise
specified, the autoencoder uses the default parameters as described in Section 7.1. We begin with a
comprehensive ablation study to validate the contribution of each proposed technique, followed by
a detailed analysis of the effect of several key hyperparameters.

We first validate the design choices for the autoencoder, with results detailed in Table 2. While
a standard, reconstruction-only autoencoder provides a reasonable baseline, naively incorporating
a variational objective leads to a significant drop in performance. This degradation is traced to
a severe instance of posterior collapse, where we found that 71 of the 128 latent dimensions had
collapsed to the standard normal prior. The introduction of the KL clipping strategy proves to be
the crucial remedy, which effectively prevents dimensional collapse and leads to a notable perfor-
mance improvement. Furthermore, applying dropout regularization to both the input tokens and the
latent vector yields considerable, orthogonal performance benefits, confirming that each technique
contributes uniquely to shaping a high-fidelity and robust latent space.

KL weight. We next examine the model’s sensitivity to the KL divergence weight, β, which gov-
erns the trade-off between reconstruction fidelity and latent space regularization. We varied β across
several orders of magnitude and present the results in Figure 6. Starting from a baseline with no KL
regularization (β = 0), we observe that introducing a small amount of variational regularization
significantly improves the final BrierLM score, which confirms our hypothesis: a moderate regu-
larization effectively smooths the latent manifold, making it more learnable for the Energy Trans-
former, while leaving reconstruction accuracy almost unaffected. However, this trend reverses as
the regularization becomes overly aggressive. At β = 0.1, the BrierLM score drops sharply, a de-
cline directly linked to the autoencoder’s compromised reconstruction fidelity, which falls to∼99%.
Based on these findings, we selected β = 0.001 to train our autoencoder.
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Table 2: Ablation study of the autoencoder’s regularization techniques. Performance is measured by
BrierLM on the downstream language modeling task.

LKL Lclip
KL DropToken DropLatent BrierLM

3.99

✓ 3.48
✓ 4.13

✓ ✓ 4.55
✓ ✓ 4.46
✓ ✓ ✓ 4.70

0 0.0001 0.001 0.01 0.1
KL Divergence Weight ( )

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Br
ie

rL
M

99.0

99.2

99.4

99.6

99.8

100.0

Ac
cu

ra
cy

 (%
)

Figure 6: Effect of the KL divergence weight
on the autoencoder’s reconstruction accuracy
and the downstream BrierLM score.
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Figure 7: Effect of the latent demension on the
autoencoder’s reconstruction accuracy and the
downstream BrierLM score.

Latent Demension. We next examine the influence of the latent dimension, l, which functions as
the information bottleneck of the autoencoder. We evaluated latent dimensions of 32, 64, 128, and
256, and respectively scaled the dropout rate to 0.05, 0.1, 0.15, and 0.2. The results are illustrated in
Figure 7. As seen, the reconstruction accuracy remains consistently high across all configurations,
but the downstream performance varies, peaking at l = 128. This suggests a trade-off in selecting
the optimal dimension. A latent space that is too small, such as with l = 32, forces the autoencoder
to learn an overly compact and brittle representation. Conversely, a large latent dimension may lead
the autoencoder to encode noisy or irrelevant features from the input tokens. This forces the Energy
Transformer to expend its finite capacity modeling this noise, making it more challenging to discern
the underlying data manifold. A dimension of l = 128 thus appears to strike an optimal balance,
providing sufficient capacity for a robust representation while maintaining a structured and learnable
latent space for the downstream generative model.

Scale. Finally, we examine the impact of scaling the autoencoder. We explored several axes of
scaling: doubling the number of layers in both the encoder and decoder to 4, doubling the hidden
dimension to 1024, and expanding the training dataset to 100B tokens. Interestingly, none of these
scaling efforts resulted in a significant improvement in the final BrierLM score. This finding suggests
that the autoencoder’s task is inherently simple and does not benefit from the aggressive scaling. A
lightweight architecture, trained on a relatively modest amount of data, is sufficient to learn the
high-fidelity and robust representation required for our framework. This is a desirable property, as
it allows the autoencoder to be a computationally negligible component of the overall system.

7.4 EFFECT OF MODEL ARCHITECTURE

In this section, we conduct ablation studies on the CALM model architecture to investigate the im-
pact of different design choices on model performance. Unless otherwise specified, all experiments
are conducted using a base configuration with a hidden size of 768, 12 hidden layers, 16 attention
heads, and an FFN intermediate size of 2048. The generative head consists of 3 MLP blocks, and
all models are trained for 50,000 steps.

Diffusion and Flow Matching. Since the generative head can be any continuous generative model,
we also evaluate two prominent choices as alternatives: diffusion (Ho et al., 2020) and flow matching
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Figure 9: Effect of sampling steps on the gen-
eration quality of diffusion and flow matching.

(Lipman et al., 2023). For these experiments, we adopt an architecture consistent with the diffusion
head used in Li et al. (2024). To ensure a fair comparison, we replicate the input hidden state
N = 8 times for both models, mirroring the multi-sample approach used for our energy loss and
promoting stable learning. During inference, we use 100 iterative steps by default. For the Flow
Matching model, we use a midpoint sampler. Figure 8 compares the performance of the diffusion,
flow matching, and energy-based generative heads. The results show that both flow matching and
our energy-based head outperform the diffusion model, exhibiting a noticeable performance gap.
Between the two, flow matching exhibits faster initial convergence, whereas our energy-based head
reaches a higher performance ceiling.

Figure 9 further compares the models’ performance across different numbers of inference iterations.
For the flow matching model, we tested both the Euler and midpoint samplers. As shown, the
diffusion model requires a large number of iterations to generate valid results. In contrast, the flow
matching model is significantly more efficient; the midpoint sampler, in particular, achieves decent
quality in just 2 steps and reaches its near-optimal performance within 4 steps. Our energy-based
generative head achieves the best of both worlds: it delivers superior performance while completely
eliminating the need for iterative decoding, making it a compelling choice for the CALM framework.

Energy Loss. We now analyze the impact of the energy loss formulation on model performance. Our
energy loss (Equation 10) involves two sampling hyperparameters: the number of model-generated
samples, N , and the number of target samples, M . Larger values for N and M provide a better esti-
mation of the true energy score, but also increase the computational cost. Our default configuration
is N = 8 and M = 100. Table 3 shows the results of varying N and M , which reveal a clear trade-
off between performance and computational cost. As expected, increasing the number of samples
consistently improves the BrierLM score, but this comes at a nearly linear increase in training cost.
Our default setting of N = 8 and M = 100 is thus justified as a balanced configuration, leveraging
a moderately sized N for a robust gradient signal and a large M to stabilize training.

Table 3: Effect of model samples N and target samples M on model performance and training cost.

Varying N (fixed M = 100) Varying M (fixed N = 8)

N = 2 N = 4 N = 8 N = 12 M = 1 M = 16 M = 100 M = 200

BrierLM 4.37 4.53 4.70 4.72 4.50 4.56 4.70 4.67
Relative Cost 0.82× 0.91× 1.0× 1.13× 0.92× 0.94× 1.0× 1.07×

We also investigate the effect of the exponent α in the energy score (Equation 9), which is guaranteed
to be strictly proper for any α ∈ (0, 2). As shown in Table 4, our empirical results align with this
theoretical property. We observe that training fails for α < 1 (e.g., α = 0.75), a phenomenon
previously analyzed by Shao et al. (2025b) and attributed to gradient explosion issues. For values of
α within the range of [1, 2), the model achieves decent performance, with the best empirical results
obtained at our default setting of α = 1. The model’s BrierLM score drops to 0 at α = 2. This is
expected, as the energy score is only proper but not strictly proper when α = 2. Consequently, the
energy loss can no longer guide the model to uniquely match the true data distribution, leading to a
collapse in modeling capability.
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Table 4: Effect of the exponent α in the energy score.

α 0.75 1 1.25 1.5 1.75 2

BrierLM Fail 4.70 4.42 4.46 4.30 0

Model Input. A critical design choice in our CALM framework is the input representation fed into
the Transformer backbone at each autoregressive step. We evaluate three distinct input schemes:
(1) Discrete input, which first decodes the previously generated vector zi−1 into K discrete tokens,
then passes them through an embedding layer and an input compression MLP to form the next step
input; (2) Continuous input, a more direct alternative where the vector zi−1 is directly projected to
the Transformer’s hidden dimension via a single linear layer; (3) Combined input, which fuses the
representations from the discrete and continuous methods through element-wise addition.

Table 5: Effect of model input on language modeling performance. Performance is evaluated using
Brier-n scores and the composite BrierLM. Higher scores are better.

Model Input Brier-1 Brier-2 Brier-3 Brier-4 BrierLM
Discrete 21.81 6.88 2.59 1.25 4.70
Continuous 17.43 5.04 1.74 0.73 3.25
Both 21.17 6.49 2.44 1.12 4.40

As summarized in Table 5, the results clearly favor the discrete input strategy. The combined input
offers no advantage and slightly degrades performance, while the purely continuous input leads
to a substantial performance drop. This confirms our hypothesis: although the continuous vector
theoretically contains all the information of its corresponding discrete tokens, its highly compact
and brittle nature makes it challenging for the model to unpack the underlying semantic information.
Grounding the autoregressive process in the discrete token space provides a more structured and
stable input signal, which is therefore critical for achieving optimal performance.

7.5 TEMPERATURE SAMPLING

In this section, we conduct a fine-grained analysis to characterize the practical behavior of our
approximate temperature sampling algorithm (Algorithm 2), i.e., how the algorithm navigates the
trade-off between predictive accuracy and generative diversity. To quantify them, we decompose the
Brier score estimator, Brier(P, y) ≈ I{x1 = y}+ I{x2 = y} − I{x1 = x2}, into two metrics:

• Accuracy E[I{x = y}]: This metric measures the probability that a single sample drawn
from the model matches the ground truth. It directly reflects the model’s accuracy.

• Collision Rate E[I{x1 = x2}]: This metric measures the collision probability that two
independent samples drawn from the model are identical. It serves as an inverse proxy for
diversity, where a higher collision rate indicates that the output distribution is less diverse.

Consistent with our primary BrierLM metric, we report both accuracy and collision rate as the ge-
ometric mean of scores over n-grams from n=1 to 4. We first investigate how the two key hyperpa-
rameters of our algorithm—temperature T and batch size N—influence these metrics. Specifically,
we conduct two sets of experiments: for a fixed temperature T = 1/3, we vary the batch size
N ∈ {1, 10, 20, 50, 100, 200, 500, 1000}; for a fixed batch size N = 500, we vary the the tempera-
ture T ∈ {1/2, 1/3, 1/4, 1/5, 1/6}.
As shown in Figure 10, both increasing the batch size N and decreasing the temperature T sharpen
the output distribution, achieving higher accuracy at the cost of reduced diversity (i.e., a higher col-
lision rate). A key observation, however, is the dominant role of the batch size N , which covers a
substantially greater range of this trade-off than the temperature T . Intuitively, a larger batch pro-
vides a clearer statistical picture of the true distribution, making it easier to indentify high-probability
candidates and confidently output them. In contrast, the effectiveness of temperature T is capped
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Figure 11: Comparison of the temperature
sampling performance between CALM and the
baseline Transformer.

by the information available within the finite batch. Thus, while temperature serves its conventional
purpose, these empirical results suggest that the batch size N is a more effective tool for navigating
the accuracy-diversity frontier in our likelihood-free framework.

Finally, we compare the behavior of our sampling algorithm against that of a traditional Trans-
former. We ensure a fair comparison by selecting model checkpoints with nearly identical BrierLM
scores. For CALM, we fix the temperature at T = 1/3 while varying the batch size N ∈
{1, 10, 20, 50, 100, 200, 500, 1000}; for the Transformer baseline, we adjust its softmax tempera-
ture across T ∈ {1, 0.9, . . . , 0.4}.
The results, plotted in Figure 11, are compelling: the accuracy-diversity trajectory traced by tuning
N in CALM is nearly identical to the one produced by tuning T in the traditional Transformer.
This alignment shows that we can accurately replicate the generative behavior of traditional models
across a wide spectrum of temperatures. For instance, matching T = 0.6 requires a batch size of
approximately N = 100, while simulating a lower temperature of T = 0.5 necessitates a larger
batch of N = 200. This suggests a clear and predictable trade-off: the ability to simulate lower-
temperature, higher-fidelity generation comes at the cost of an increased number of samples.

8 CONCLUSION AND FUTURE WORK

In this work, we challenge the inefficient, token-by-token paradigm of LLMs by introducing Contin-
uous Autoregressive Language Models (CALM), a framework that shifts generation from discrete
tokens to a continuous vector space where a single vector represents K tokens. To support this ap-
proach, we develop a comprehensive likelihood-free toolkit: a robust and high-fidelity autoencoder,
the energy loss for generative modeling, the BrierLM metric for LM evaluation, and a new suite
of algorithms for temperature sampling. Empirical results show that CALM achieves a superior
performance-compute trade-off, highlighting a new scaling axis for language modeling: scaling the
semantic bandwidth of each generative step to push the performance-compute frontier of LLMs.

Despite these promising results, CALM still has significant room for future architectural and algo-
rithmic optimizations, as indicated by the performance gap between CALM at K=1 and a standard
Transformer baseline. We identify several key areas with great potential for future research:

• Autoencoder. The autoencoder is the cornerstone of the CALM framework, which directly
governs the quality of the latent space. One key limitation of the current autoencoder is
its primary focus on reconstruction, with less emphasis on semantic structure. A promis-
ing direction is to design an autoencoder that learns a semantically grounded latent space,
where proximity in the latent space corresponds to semantic similarity. We note that build-
ing such semantically rich latent spaces has been a recent trend in the vision domain (Zheng
et al., 2025). This could provide a powerful inductive bias for the downstream generative
model. Another direction is the development of more powerful architectures. Designs that
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are context-aware or autoregressive, for example, could offer superior robustness and more
reliable reconstruction.

• Model. The core generative model also presents significant avenues for exploration. For
instance, in terms of architecture, our current design employs a Transformer backbone fol-
lowed by a lightweight generative head; while efficient, an alternative is to explore a more
integrated, end-to-end generative Transformer, which may yield stronger generative model-
ing capabilities. In terms of the training objective, while the energy loss provides a robust
foundation, investigating other strictly proper scoring rules or generative models is worth-
while, as they may offer different optimization dynamics and improved sample quality.

• Sampling. While our work introduces a provably exact algorithm for likelihood-free tem-
perature sampling, its reliance on rejection sampling can introduce significant inference
overhead. A promising direction for future work is to explore more lightweight, heuristic
methods for navigating the diversity-fidelity trade-off at inference time. This could include
techniques such as manipulating the scale of the input noise to the generative head, or fine-
tuning the model with a modified loss function to steer its generative behavior.

• Scaling. A critical next step is to investigate the scaling properties of CALM. A hypothesis
to validate is that larger models possess the requisite capacity to support higher semantic
bandwidths. A further pursuit is to establish a new family of scaling laws. While traditional
laws (Kaplan et al., 2020) model performance as a function of model and data size, our
framework introduces the semantic bandwidth K as a third variable. Formulating a unified
scaling law would enable the principled selection of an optimal K for any compute budget.

• Algorithmic Toolkit. The paradigm shift from discrete tokens to a continuous domain ne-
cessitates a re-evaluation of the standard LLM algorithmic toolkit. For instance, policy op-
timization methods in reinforcement learning typically update the model by increasing the
log-probability of rewarded samples, a quantity that CALM cannot directly compute. Sim-
ilarly, knowledge distillation often requires minimizing the KL divergence between teacher
and student distributions, which is intractable without access to the full probability mass
function. How to reformulate these techniques to operate in a sample-based regime is an
important question for future research.
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Mina Rezaei. Probabilistic self-supervised representation learning via scoring rules minimization.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=skcTCdJz0f.

Aaron van den Oord, Oriol Vinyals, and koray kavukcuoglu. Neural discrete representation learn-
ing. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Cur-
ran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/
paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf.

Haoran Wei, Yaofeng Sun, and Yukun Li. Deepseek-ocr: Contexts optical compression, 2025. URL
https://arxiv.org/abs/2510.18234.

LILI YU, Daniel Simig, Colin Flaherty, Armen Aghajanyan, Luke Zettlemoyer, and Mike Lewis.
MEGABYTE: Predicting million-byte sequences with multiscale transformers. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=JTmO2V9Xpz.

Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan Skoglund, and Marco Tagliasacchi. Sound-
stream: An end-to-end neural audio codec, 2021. URL https://arxiv.org/abs/2107.
03312.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

28

https://arxiv.org/abs/2406.06525
https://arxiv.org/abs/2412.08635
https://arxiv.org/abs/2412.08821
https://arxiv.org/abs/2508.10711
https://arxiv.org/abs/2410.16048
https://openreview.net/forum?id=skcTCdJz0f
https://openreview.net/forum?id=skcTCdJz0f
https://proceedings.neurips.cc/paper_files/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf
https://arxiv.org/abs/2510.18234
https://openreview.net/forum?id=JTmO2V9Xpz
https://openreview.net/forum?id=JTmO2V9Xpz
https://arxiv.org/abs/2107.03312
https://arxiv.org/abs/2107.03312


Preprint

Boyang Zheng, Nanye Ma, Shengbang Tong, and Saining Xie. Diffusion transformers with repre-
sentation autoencoders, 2025. URL https://arxiv.org/abs/2510.11690.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023. URL https://arxiv.org/
abs/2306.05685.

29

https://arxiv.org/abs/2510.11690
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685


Preprint

A PROOF

A.1 PROOF OF THEOREM 1

Theorem 1. For an implicit discrete distribution P (x) with sampler S and a temperature T ∈ (0, 1),
Algorithm 1 generates samples distributed as:

PT (x) =
P (x)1/T

ZT
, ZT =

∑
x

P (x)1/T .

Proof. Algorithm 1 implements a rejection sampling scheme where sample x is accepted with prob-
ability Paccept(x). The proof proceeds by showing that the acceptance probability Paccept(x) =

P (x)1/T , so the rejection sampling procedure yields the desired normalized sample distribution:

PT (x) =
Paccept(x)∑
x Paccept(x)

=
P (x)1/T∑
x P (x)1/T

. (16)

The inverse temperature is decomposed as 1/T = n + α, where n = ⌊1/T ⌋ is the integer part and
α ∈ [0, 1) is the fractional part. The acceptance probability is the product of the success probabilities
of the two corresponding stages.

Stage 1 (Integer Part): For the algorithm to proceed to stage 2 with a candidate sample x, it must
first draw x for n consecutive times in stage 1. As each draw is independent with probability P (x),
the probability of passing stage 1 with candidate x is P (x)n.

Stage 2 (Fractional Part): Let p = P (x). The probability of acceptance in stage 2 is the cumulative
probability of being accepted at any given iteration i ≥ 1:

Pstage2 = P (accept at i = 1) + P (pass i = 1, accept at i = 2) + . . .

= p+ (1− p)
(
1− α

1

)
p+ (1− p)2

(
1− α

1

)(
1− α

2

)
p+ . . .

= p

∞∑
k=0

(1− p)k
k∏

j=1

(
1− α

j

)

= p

∞∑
k=0

(p− 1)k
(
α− 1

k

)
= p · (p− 1 + 1)α−1

= pα.

(17)

The second to last step is due to the generalized binomial theorem.

Total Probability: The total probability of accepting a sample x in a single trial is the product of
the probabilities from the two stages:

Paccept(x) = P (x)n · P (x)α = P (x)1/T , (18)

which completes the proof.
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A.2 PROOF OF THEOREM 2

Theorem 2. The expected number of calls to the base sampler S, denoted E[Ntotal], required to
generate one sample using Algorithm 1 is:

E[Ntotal] =
n+ I(α > 0)

∑
x P (x)1/T−1

ZT

where ZT =
∑

x P (x)1/T , n = ⌊1/T ⌋, α = 1/T − n, and I(·) is the indicator function.

Proof. The algorithm conducts series of independent trials, each with identical probability of suc-
cess, and continues until one trial is successful, thereby following a geometric distribution. There-
fore, the expected number of samples is the ratio of the expected number of samples per trial,
E[Ntrial], to the probability of a trial’s success, P (success):

E[Ntotal] =
E[Ntrial]

P (success)
. (19)

Denominator (Success Probability): A trial is successful if any sample x is accepted. The total

success probability is the sum of acceptance probabilities over all possible outcomes:

P (success) =
∑
x

Paccept(x) =
∑
x

P (x)1/T = ZT . (20)

Numerator (Expected Calls per Trial): Let Ntrial be the number of sampler calls in a single trial.
A trial always involves N1 calls for stage 1 and may involve N2 calls for stage 2. The number of
calls in Stage 1 is fixed at N1 = n. Thus, E[N1] = n.

If α = 0, stage 2 is never performed, so E[N2] = 0. If α > 0, stage 2 is only executed if stage 1
succeeds with some candidate x. Let Ex be this event, so P (Ex) = P (x)n, and we have:

E[N2] =
∑
x

P (Ex) · E[N2|Ex]. (21)

The conditional expectation E[N2|Ex] is the expected number of draws in stage 2 given candidate x.
Using the formula E[X] =

∑∞
k=1 P (X ≥ k), where X is the number of draws in stage 2:

E[N2|Ex] =
∞∑
k=1

P (stage 2 requires at least k draws)

=

∞∑
k=0

(1− P (x))k
k∏

j=1

(
1− α

j

)
.

(22)

This is the same sum we evaluated in Equation 17, which equals P (x)α−1. Therefore, if α > 0:

E[N2] =
∑
x

P (x)n · P (x)α−1 =
∑
x

P (x)n+α−1 =
∑
x

P (x)1/T−1. (23)

Combining the two cases, the total expected number of calls per trial is:

E[Ntrial] = E[N1] + E[N2] = n+ I(α > 0)
∑
x

P (x)1/T−1. (24)

Combining the numerator and denominator gives the final result:

E[Ntotal] =
n+ I(α > 0)

∑
x P (x)1/T−1

ZT
. (25)
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Corollary 2.1. Let |X | be the size of sample space. The expected number of sampler calls E[Ntotal]
at temperature T ∈ (0, 1) is bounded by:

E[Ntotal] ≤


1 + n

ZT
, if 0 < T ≤ 0.5

1 + |X |2−1/T

ZT
, if 0.5 < T < 1

where n = ⌊1/T ⌋ and ZT =
∑

x P (x)1/T .

Proof. The proof is divided into two cases based on the temperature range. We start from the general
formula for the expected cost from Theorem 2:

E[Ntotal] =
n+ I(α > 0)

∑
x P (x)1/T−1

ZT
. (26)

Case 1: Low-Temperature Regime (0 < T ≤ 0.5)

In this range, the exponent 1/T − 1 ≥ 1. Since P (x) ∈ [0, 1], for any exponent β ≥ 1, we have
P (x)β ≤ P (x). Thus, by summing over the entire sample space X :∑

x∈X
P (x)1/T−1 ≤

∑
x∈X

P (x) = 1. (27)

The numerator of the cost formula is therefore bounded by n+ 1:

n+ I(α > 0)
∑
x∈X

P (x)1/T−1 ≤ n+ I(α > 0) · 1 ≤ n+ 1. (28)

This establishes the bound for the low-temperature regime.

Case 2: High-Temperature Regime (0.5 < T < 1)

In this range,the exponent β = 1/T − 1 is in the interval (0, 1). For such an exponent, the function
f(p) = pβ is concave. By Jensen’s inequality, the sum

∑
x∈X P (x)β is maximized when P (x) is a

uniform distribution over the sample space, i.e., P (x) = 1/K for all x ∈ X . The bound is:∑
x∈X

P (x)1/T−1 ≤
∑
x∈X

(
1

K

)1/T−1

= K ·
(

1

K

)1/T−1

= K2−1/T . (29)

Substituting this into the cost formula gives the bound for the high-temperature regime. This com-
pletes the proof.
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A.3 PROOF OF THEOREM 3

Theorem 3. Let Palg(x;N) be the probability of sampling x using Algorithm 2 with a batch size
of N , and let PT (x) = P (x)n/ZT be the true target distribution at temperature T = 1/n, where
ZT =

∑
x P (x)n. The algorithm is asymptotically unbiased:

lim
N→∞

Palg(x;N) = PT (x).

Proof. Let B = {x1, . . . , xN} be a batch of N samples drawn i.i.d. from the base distribution P (x).
For any sample x ∈ X , let Cx be the random variable for the count of x in B. The weight assigned
to x is Wx =

(
Cx

n

)
. Let XN be the random variable for the probability of sampling x from B:

XN (x) =
Wx∑

z∈X Wz
=

(
Cx

n

)∑
z∈X

(
Cz

n

) . (30)

The overall probability we seek to analyze is the expectation of this random variable: Palg(x;N) =
E[XN ]. Our goal is to show that limN→∞ E[XN ] = PT (x). The proof proceeds in two main steps:
first, we show that the random variable XN converges in probability to PT (x); second, we use the
Bounded Convergence Theorem to show that this implies the convergence of its expectation.

1. Convergence in Probability. By the Weak Law of Large Numbers, the proportion of occurrences
of any sample x converges in probability to its true probability P (x):

Cx

N

p−→ P (x) as N →∞. (31)

The weight Wx can be written as a polynomial in Cx, Wx = 1
n!Cx(Cx − 1) . . . (Cx − n + 1). We

normalize this by Nn:

Wx

Nn
=

1

n!

(
Cx

N

)(
Cx − 1

N

)
. . .

(
Cx − n+ 1

N

)
. (32)

Since Cx

N

p−→ P (x) and k
N → 0 for any constant k, each term in the product converges to P (x). By

the Continuous Mapping Theorem, the entire expression converges in probability:
Wx

Nn

p−→ 1

n!
P (x)n. (33)

Now, we analyze the random variable XN by dividing its numerator and denominator by Nn:

XN =
Wx/N

n∑
z∈X (Wz/Nn)

. (34)

Applying the Continuous Mapping Theorem again for the ratio, we show that the random variable
XN converges in probability to PT (x):

XN
p−→

1
n!P (x)n∑

z∈X
1
n!P (z)n

=
P (x)n∑

z∈X P (z)n
= PT (x). (35)

2. Convergence of Expectation. We have established that the random variable XN converges in
probability to PT (x). Besides, we have that XN is inherently bounded:

0 ≤ XN =
Wx∑

z∈X Wz
≤ 1. (36)

We can now invoke the Bounded Convergence Theorem, which states that if a sequence of random
variables XN converges in probability to X , and |XN | ≤ M for all N for some constant M , then
limN→∞ E[XN ] = E[limN→∞ XN ]. Applying this theorem to our case:

lim
N→∞

Palg(x;N) = lim
N→∞

E[XN ] = E
[
lim

N→∞
XN

]
= PT (x). (37)

This completes the proof that the algorithm is asymptotically unbiased.
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